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l At high energies, the longitudinal distance essential for a given process 
increases with the beam momentum plab, Feinberg, Pomeranchuk, Suppl. Nuovo Cim. III (1956) 
652; Gribov, Ioffe, Pomeranchuk, Yad. Fiz. 2 (1965) 768; Ioffe, PLB 30 (1969) 123 

Large lc and hadronic structure of projectiles

CONTENTS 68

of the nuclear shadowing correction to the total pion–deuteron (hadron–nucleus) cross

section discussed in Sec. 7.

6.2. Cross section fluctuations

The idea that inelastic di↵raction can take place at small t due to the presence of

configurations in the nucleon, which can interact with di↵erent strengths, was first

suggested in the paper of Feinberg and Pomeranchuk [1, 2]. In this work, as an example

of fluctuation of the interaction strength, the authors considered fluctuations of the

nucleon into the nucleon and the pion, where the latter could originate from the pion

field of the nucleon.

A model illustrating this idea was suggested by Good and Walker [3]. They assumed

that the projectile can interact with di↵erent interaction strengths in contributing

configurations, which do not change while the wave packet passes through the target.

The corresponding coherence length (time) lc denotes the distance, over which the

incoming hadron remains in the state with the mass M
⇤,

lc =
1
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� Rtarget , (129)

where Rtarget is the radius of the target. From Eq. (129), one can immediately see

that the coherence length linearly grows with an increase of the energy of the incoming

hadron. Therefore, the range of masses M
⇤, which contribute to the fluctuations and

which can be considered “frozen”, increases.

Good and Walker [3] assumed that the state of an energetic incident hadron | i can

be represented as a coherent superposition of eigenstates | ki of the scattering matrix

| i =
X

k

ck| ki , (130)

where

ImT | ki = tk| ki ,X

k

|ck|2 = 1 . (131)

Here, T is the scattering operator, and tk is the imaginary part of the eigenvalue

corresponding to the eigenstate | ki.
Various states | ki interact with the target with di↵erent cross sections �k. By the

optical theorem, �k is related to the imaginary part of the scattering amplitude tk,

�k = tk . (132)

Thus, the coherent superposition of the eigenstates, which form the final state emerging

after the scattering, could be di↵erent from the initial state. Note that introduction of

states, which interact with di↵erent cross sections, is natural in QCD, see the discussion

in Sec. 3, where (at least in the perturbative regime) the strength of interaction is related

to the area occupied by color.
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l In this case, the projectile of mass mh can fluctuate into hadronic fluctuations 
of mass M*, whose interactions with the target are Lorentz-dilated. 


l This picture is especially fruitful for description of diffractive dissociation in 
target frame.


l In soft hadron-nucleus scattering, it is realized via eigenstates of the 
scattering operator (cross section fluctuations), Good, Walker, PR 120 (1960) 1857


l In QCD, it is realized as quark-gluon color dipoles of different transverse 
sizes; color fluctuations of the gluon density correlated with proton size, 
Frankfurt, Strikman, Treleani, Weiss, PRL 101 (2008) 202003; fluctuations of the proton shape (hot 
spots), Mäntysaari, Schenke, PRL 117 (2016) 5, 052301; Cepila, Contreras, Tapia Takaki, PLB 766 (2017) 186. 


l Correspondence between fluctuations and dipole model valid only at t=0!
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l The notion of composite structure of energetic projectiles can be realized by 
expansion in terms of eigenstates of the scattering operator, Good, Walker, PR 120 

(1960) 1857 

Good-Walker cross section fluctuations

l Total diffractive cross section:
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Thus, the coherent superposition of the eigenstates, which form the final state emerging

after the scattering, could be di↵erent from the initial state. Note that introduction of
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Thus, the formalism of eigenstates of the scattering matrix is natural for describing

di↵ractive dissociation of hadrons. However, the model is valid only for small t, which is

the kinematics considered in the original paper [3], since the authors discussed di↵ractive

dissociation for scattering o↵ nuclei. Thus, they e↵ectively assumed that t is very small,

�t  2/R2
A, where RA is the e↵ective nucleus size. Later on in a number of papers it

was assumed that Eq. (131) can be applied in a wide range of the momentum transfer,

which seems problematic. Indeed, elastic scattering of one of the constituents of the

di↵racting hadron can break it at finite t even in the absence of fluctuations, see the

case of the deuteron–proton scattering considered above and the rapidity gap process

discussed in Sec. 5.6. The assumption that cross section eigenstates are orthogonal at

t 6= 0 is in contradiction with calculations in the dipole model, where one obtains for

two states with di↵erent transverse sizes rt and r
0
t

h (rt)|T (t 6= 0)| (r0
t)i 6= 0 . (133)

Also, additional evidence comes from the analysis of soft di↵raction in pp scattering

[238], which shows that spin-flip amplitudes become important and dominate at large

�t � 0.2 � 0.3 GeV2.

Thus, the formalism of eigenstates of the scattering matrix is suitable for describing

di↵ractive dissociation of hadrons for t ⇠ 0.

Using Eqs. (130)–(132), di↵ractive dissociation can be presented as follows.

Di↵ractive scattering occurs when the final state carries the same quantum numbers

as the initial state, i.e., whenever the initial state overlaps with any | ki. Then, the

total di↵ractive di↵erential cross section at t = 0 can be presented as
⇣

d�

dt

⌘di↵

t=0
=

1

16⇡

X

k

|h k|ImT | i|2 =
1

16⇡

X

k

|ck|2t2k ⌘ 1

16⇡
h�2i . (134)

In Eq. (134), we have used the completeness of the set of states | ki and the optical

theorem (132). Similarly, the elastic di↵erential cross section at t = 0 reads
⇣

d�

dt

⌘el

t=0
=

1

16⇡
|h |ImT | i|2 =

1

16⇡

⇣ X

k

|ck|2tk
⌘2

⌘ 1

16⇡
h�i2

. (135)

In these equations, we introduced the first and second moments of the distribution over

cross sections

h�i =
X

k

|ck|2tk ,

h�2i =
X

k

|ck|2t2k . (136)

Subtracting the elastic cross section from the total di↵ractive cross section, one

obtains the di↵ractive dissociation cross section (inelastic di↵ractive cross section)
⇣

d�

dt

⌘diss

t=0
=

⇣
d�

dt

⌘di↵

t=0
�

⇣
d�

dt

⌘el

t=0
=

1

16⇡

⇣
h�2i � h�i2

⌘
. (137)

Equation (137) was first derived in [239] to describe di↵ractive dissociation within

the framework of cross section fluctuations. It explicitly demonstrates that di↵ractive
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l Elastic cross section:

CONTENTS 69

Thus, the formalism of eigenstates of the scattering matrix is natural for describing
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Equation (137) was first derived in [239] to describe di↵ractive dissociation within

the framework of cross section fluctuations. It explicitly demonstrates that di↵ractive
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l Diffractive dissociation (inelastic diffraction) is possible only if different 
fluctuations interact with different cross sections, i.e. when there are cross 
section fluctuations:

CONTENTS 69
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l In applications, it is more convenient to 
work with continuous version, Miettinen,  
Pumplin, PRD 18 (1978) 1696; Blättet, Baym, Frankfurt, 
Heiselberg, Strikman, PRD 47 (1992) 2761:

Probability of cross section fluctuations

l Except for small σ, the distribution P(σ) is non-perturbative and needs 
modeling. It satisfies the following constraints:

CONTENTS 70

dissociation occurs only if di↵erent components | ki of the incident hadron interact with

the target with di↵erent strengths tk, i.e. when cross section fluctuations take place in

the wave function of the incoming hadron.

6.3. Properties of distribution over interaction strength P (�)

Within the eigenstate scattering formalism it is useful to introduce the distribution over

cross sections P (�), which gives the probability to find in an energetic projectile (proton,

pion, real or virtual photon) a hadronic (quark–gluon) configuration interacting with

the target with the cross section �. This distribution is a continuum version of the

descrete formalism discussed in the previous section,
X

k

|ck|2 !
Z

d�P (�) ,

h�i =

Z
d�P (�)� ,

h�2i =

Z
d�P (�)�2

. (138)

Note that the P (�) distribution was introduced by Miettinen and Pumplin [239] in

the context of a parton model, where the strength of interaction is proportional to the

number of slow partons. It was revived in Ref. [92] within the color screening framework.

The distribution of P (�) satisfies the normalization and the average cross section

sum rules Z
d�P (�) = 1 ,

Z
d�P (�)� = �tot , (139)

where �tot is the total projectile–target cross section.

The dispersion of P (�) around h�i is naturally related to the cross section of

di↵ractive dissociation, see Eq. (137),
Z

d�P (�)(�2
/�

2
tot � 1) =

⇣
d�

dt

⌘diss

t=0

.⇣
d�

dt

⌘el

t=0
⌘ !� . (140)

The shape of the distribution P (�) can be modeled using Eqs. (139) and (140) and

making a natural assumption that fluctuations around h�i should be approximately

Gaussian. In addition one can use the analysis [240] of the coherent di↵raction o↵ the

deuteron, which indicates that h(1 � �/�tot)3i ⇡ 0.

The behavior of P (� ! 0) is determined by the interplay of the probability for a

hadron to be in a small-size configuration and the cross section for such a configuration

leading to

Ph(�) / �
nq�2

, (141)

where nq is the number of valence quarks in the hadron. Thus, for protons and pions,

when � is much smaller than the average value of �, i.e. when � ⌧ h�i, one obtains
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dissociation occurs only if di↵erent components | ki of the incident hadron interact with

the target with di↵erent strengths tk, i.e. when cross section fluctuations take place in

the wave function of the incoming hadron.

6.3. Properties of distribution over interaction strength P (�)

Within the eigenstate scattering formalism it is useful to introduce the distribution over

cross sections P (�), which gives the probability to find in an energetic projectile (proton,

pion, real or virtual photon) a hadronic (quark–gluon) configuration interacting with

the target with the cross section �. This distribution is a continuum version of the

descrete formalism discussed in the previous section,
X

k

|ck|2 !
Z

d�P (�) ,

h�i =

Z
d�P (�)� ,

h�2i =

Z
d�P (�)�2

. (138)

Note that the P (�) distribution was introduced by Miettinen and Pumplin [239] in

the context of a parton model, where the strength of interaction is proportional to the

number of slow partons. It was revived in Ref. [92] within the color screening framework.

The distribution of P (�) satisfies the normalization and the average cross section

sum rules Z
d�P (�) = 1 ,

Z
d�P (�)� = �tot , (139)

where �tot is the total projectile–target cross section.

The dispersion of P (�) around h�i is naturally related to the cross section of

di↵ractive dissociation, see Eq. (137),
Z

d�P (�)(�2
/�

2
tot � 1) =

⇣
d�

dt

⌘diss

t=0

.⇣
d�

dt

⌘el

t=0
⌘ !� . (140)

The shape of the distribution P (�) can be modeled using Eqs. (139) and (140) and

making a natural assumption that fluctuations around h�i should be approximately

Gaussian. In addition one can use the analysis [240] of the coherent di↵raction o↵ the

deuteron, which indicates that h(1 � �/�tot)3i ⇡ 0.

The behavior of P (� ! 0) is determined by the interplay of the probability for a

hadron to be in a small-size configuration and the cross section for such a configuration

leading to

Ph(�) / �
nq�2

, (141)

where nq is the number of valence quarks in the hadron. Thus, for protons and pions,

when � is much smaller than the average value of �, i.e. when � ⌧ h�i, one obtains
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l Small-σ from quark counting rule, where nq is number of valence quarks:
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where �tot is the total projectile–target cross section.

The dispersion of P (�) around h�i is naturally related to the cross section of

di↵ractive dissociation, see Eq. (137),
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The shape of the distribution P (�) can be modeled using Eqs. (139) and (140) and

making a natural assumption that fluctuations around h�i should be approximately

Gaussian. In addition one can use the analysis [240] of the coherent di↵raction o↵ the

deuteron, which indicates that h(1 � �/�tot)3i ⇡ 0.

The behavior of P (� ! 0) is determined by the interplay of the probability for a

hadron to be in a small-size configuration and the cross section for such a configuration

leading to

Ph(�) / �
nq�2

, (141)

where nq is the number of valence quarks in the hadron. Thus, for protons and pions,

when � is much smaller than the average value of �, i.e. when � ⌧ h�i, one obtains
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l For definiteness, Gaussian decay for large σ.

→
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that

Pp(�) ⇠ � ,

P⇡(�) ⇠ const . (142)

The parameterizations of the proton and pion distribution functions P (�) suggested

in the literature [92, 240] describe correctly the behaviour at small and large � discussed

above,

Pp(�) = Np
�/�0

�/�0 + 1
e

�(���0)2/(⌦�0)2
,

P⇡(�) = N⇡ e
�(���0)2/(⌦�0)2

, (143)

where �0 ⇠ �tot and ⌦ determine the peak and the width of P (�), respectively. These

parameters are found using the sum rules of Eqs. (139) and (140), and, therefore, they

depend on energy.

In the pion case one can go further and use pQCD to calculate the probability of

small-size configurations, i.e., the constant entering Eq. (142). Indeed, using the QCD

factorization theorem [93, 92] for the interaction of a small-size dipole with hadrons,

one finds for P⇡(�) at � ⌧ h�i,

P⇡(� ⌧ h�i) =
6f 2

⇡

5↵s(4k2
t )x̄GN(x̄, 4k2

t )
. (144)

In this equation, ↵s(4k2
t ) is the QCD running coupling constant; GN(x̄, 4k2

t ) is the gluon

distribution in the nucleon; x̄ = 4k2
t /s⇡N , where s⇡N is the center of mass energy squared;

k
2
t / 1/d2

t , where dt is the transverse size of the qq̄ pair in the pion wave function; f⇡

is the constant of the ⇡ ! µ⌫ decay. This estimate gives a correct magnitude of

P⇡(� ⌧ �tot(⇡N), see Fig. 2 of Ref. [241].

To present explicit forms of Pp(�) and P⇡(�), we used the COMPETE

parametrization of the total proton–proton and pion–proton cross sections [218].

The variance of the Pp(�) distribution for protons, !� in Eq. (140), can be extracted

from the data at fixed-target and collider energies. It was found [240, 242] that !�

initially grows with energy reaching a broad maximum value !� ⇠ 0.30 ± 0.05 aroundp
s ⇠ 60 GeV and then starts to decrease for

p
s > 200 GeV toward the Tevatron and

LHC energies reaching the value of !� ⇠ 0.1 at
p

s ⇠ 8 TeV. Thus, one can parameterize

the energy dependence of !� for the proton in the following simple form

!�(s) =

8
><

>:

�
p

s/(24 GeV) ,
p

s < 24 GeV ,

� , 24 <
p

s < 200 GeV ,

� � 0.056 ln(
p

s/200 GeV) ,
p

s > 200 GeV ,

(145)

where � = 0.30 ± 0.05.

The resulting Pp(�) as a function of � for three typical values of energies (
p

s = 200

GeV,
p

s = 1.8 TeV, and
p

s = 13 TeV) is presented in Fig. 30. One can see from the

figure that the distribution Pp(�) remains rather broad for all studied energies since a

decrease of !� is compensated by an increase of �tot [218].
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l Distribution P(σ) for protons, Blättet, Baym, Frankfurt, Heiselberg, Strikman, PRD 47 (1992) 2761:

Cross section fluctuations for protons

l Width of fluctuations ωσ → from 
data on anti-p-p single diffraction 
and nucleon-deuteron total cross 
section data at fixed target and 
collider energies, Guzey, Strikman, PLB 
633 (2006) 245

CONTENTS 71

that

Pp(�) ⇠ � ,

P⇡(�) ⇠ const . (142)

The parameterizations of the proton and pion distribution functions P (�) suggested

in the literature [92, 240] describe correctly the behaviour at small and large � discussed

above,

Pp(�) = Np
�/�0

�/�0 + 1
e

�(���0)2/(⌦�0)2
,

P⇡(�) = N⇡ e
�(���0)2/(⌦�0)2

, (143)

where �0 ⇠ �tot and ⌦ determine the peak and the width of P (�), respectively. These

parameters are found using the sum rules of Eqs. (139) and (140), and, therefore, they

depend on energy.

In the pion case one can go further and use pQCD to calculate the probability of

small-size configurations, i.e., the constant entering Eq. (142). Indeed, using the QCD

factorization theorem [93, 92] for the interaction of a small-size dipole with hadrons,

one finds for P⇡(�) at � ⌧ h�i,

P⇡(� ⌧ h�i) =
6f 2

⇡

5↵s(4k2
t )x̄GN(x̄, 4k2

t )
. (144)

In this equation, ↵s(4k2
t ) is the QCD running coupling constant; GN(x̄, 4k2

t ) is the gluon

distribution in the nucleon; x̄ = 4k2
t /s⇡N , where s⇡N is the center of mass energy squared;

k
2
t / 1/d2

t , where dt is the transverse size of the qq̄ pair in the pion wave function; f⇡

is the constant of the ⇡ ! µ⌫ decay. This estimate gives a correct magnitude of

P⇡(� ⌧ �tot(⇡N), see Fig. 2 of Ref. [241].

To present explicit forms of Pp(�) and P⇡(�), we used the COMPETE

parametrization of the total proton–proton and pion–proton cross sections [218].

The variance of the Pp(�) distribution for protons, !� in Eq. (140), can be extracted

from the data at fixed-target and collider energies. It was found [240, 242] that !�

initially grows with energy reaching a broad maximum value !� ⇠ 0.30 ± 0.05 aroundp
s ⇠ 60 GeV and then starts to decrease for

p
s > 200 GeV toward the Tevatron and

LHC energies reaching the value of !� ⇠ 0.1 at
p

s ⇠ 8 TeV. Thus, one can parameterize

the energy dependence of !� for the proton in the following simple form

!�(s) =

8
><

>:

�
p

s/(24 GeV) ,
p

s < 24 GeV ,

� , 24 <
p

s < 200 GeV ,

� � 0.056 ln(
p

s/200 GeV) ,
p

s > 200 GeV ,

(145)

where � = 0.30 ± 0.05.

The resulting Pp(�) as a function of � for three typical values of energies (
p

s = 200

GeV,
p

s = 1.8 TeV, and
p

s = 13 TeV) is presented in Fig. 30. One can see from the

figure that the distribution Pp(�) remains rather broad for all studied energies since a

decrease of !� is compensated by an increase of �tot [218].
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Figure 30. The distribution Pp(�) as a function of � for
p

s = 200 GeV (solid red),p
s = 1.8 TeV (blue short-dashed), and

p
s = 13 TeV (green dot-dashed).

For the pion projectile, one can use the constituent quark counting rule for the

ratio of the nucleon–nucleon and the pion–nucleon total cross sections [243] to obtain

the following simple estimate for !� for pions

!
⇡
� =

3

2
!� . (146)

The resulting P⇡(�) distribution for pions as a function of � for
p

s = 46 GeV andp
s = 62 GeV is shown in Fig. 31. These values correspond to the invariant photon–

nucleon energies accessed in photoproduction of ⇢ mesons in heavy-ion ultraperipheral

collisions at central rapidities at the LHC, see next section.

6.4. P⇢(�) distribution for ⇢ mesons

Color fluctuation phenomena can also be studied in ⇢ meson photoproduction, which

was explored at HERA and in heavy-ion ultraperipheral collisions at the LHC. We note

that P⇢(�) corresponds actually to the � ! ⇢ transition (we shall use P⇢ as a shorthand

notation).

Based on the constituent quark counting rule, it is generally expected that the

P⇢(�) distribution for ⇢ mesons should be similar to that for pions. However, this does

not seem to be supported by the HERA data on ⇢ photoproduction. Indeed, the model

based on the combination of the assumption that �⇢N = �⇡N (�⇢N and �⇡N are the total

⇢ meson–nucleon and pion–nucleon total cross sections, respectively) with the vector

meson meson dominance (VMD) model somewhat overestimates the HERA data on the

��p!⇢p cross section of elastic ⇢ photoproduction on the proton [244, 245, 246, 247].

This calls for modifications of P⇢(�) compared to P⇡(�). First, a natural mechanism of
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factorization theorem [93, 92] for the interaction of a small-size dipole with hadrons,
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In this equation, ↵s(4k2
t ) is the QCD running coupling constant; GN(x̄, 4k2

t ) is the gluon

distribution in the nucleon; x̄ = 4k2
t /s⇡N , where s⇡N is the center of mass energy squared;

k
2
t / 1/d2

t , where dt is the transverse size of the qq̄ pair in the pion wave function; f⇡

is the constant of the ⇡ ! µ⌫ decay. This estimate gives a correct magnitude of

P⇡(� ⌧ �tot(⇡N), see Fig. 2 of Ref. [241].

To present explicit forms of Pp(�) and P⇡(�), we used the COMPETE

parametrization of the total proton–proton and pion–proton cross sections [218].

The variance of the Pp(�) distribution for protons, !� in Eq. (140), can be extracted

from the data at fixed-target and collider energies. It was found [240, 242] that !�

initially grows with energy reaching a broad maximum value !� ⇠ 0.30 ± 0.05 aroundp
s ⇠ 60 GeV and then starts to decrease for

p
s > 200 GeV toward the Tevatron and

LHC energies reaching the value of !� ⇠ 0.1 at
p

s ⇠ 8 TeV. Thus, one can parameterize

the energy dependence of !� for the proton in the following simple form

!�(s) =

8
><
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�
p

s/(24 GeV) ,
p

s < 24 GeV ,

� , 24 <
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s < 200 GeV ,

� � 0.056 ln(
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p
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(145)

where � = 0.30 ± 0.05.

The resulting Pp(�) as a function of � for three typical values of energies (
p

s = 200

GeV,
p

s = 1.8 TeV, and
p

s = 13 TeV) is presented in Fig. 30. One can see from the

figure that the distribution Pp(�) remains rather broad for all studied energies since a

decrease of !� is compensated by an increase of �tot [218].

Page 71 of 127 AUTHOR SUBMITTED MANUSCRIPT - ROPP-101426

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

l Resulting P(σ) for protons, 
Frankfurt, Guzey, Stasto, Strikman, review 
submitted to ROPP
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l This formalism gives rise to diffraction dissociation of hadrons on nuclei and 
provides a good description of the available fixed-target data, Frankfurt, Guzey, 
Strikman, J. Phys. G: Nucl. Part. Phys. 27 (2006) R27

pA coherent diffraction dissociation

R64 Topical Review

Figure 19. The cross section of coherent diffraction dissociation of protons and neutrons on nuclei
as a function of the atomic number A. The full curves are the theoretical prediction of equation (59).
The data on the reaction n + A → pπ− + A [81] is presented as stars and the data for the emulsion
targets [82] is presented as triangles. The data point, presented by the full circle, corresponds to
A = 4 (4He) and is extracted from [77] (see equation (58)). The theoretical prediction for coherent
diffraction on 4He is given by the broken curves (see equation (57)).

The theoretical prediction of equation (60) for protons (neutrons) is compared with the
experimental data in figure 19, where σ pA

diff is presented as a function of A. The three full
curves correspond to the calculation with n = 2, 6 and 10 of the parametrization (47). The A

dependence of σ pA
diff is of the approximate form A0.8 for A ≈ 16 and A0.4 for A ≈ 200. There

are only two sets of experimental data on coherent nuclear diffraction of nucleons on heavy
nuclei—the data on n + A → pπ− + A for the mass interval 1.35 ! M ! 1.45 GeV [81] and
the data for emulsion targets [82]. In figure 19, the data of [81] is presented as stars and the
data of [82] is presented as triangles.

As one can see from figure 19, the theoretical prediction of the A dependence of coherent
diffraction of protons and neutrons on nuclei, based on colour fluctuations accumulated in
Pp(σ ), reproduces the experimental data well. Note that the data points for the reaction
n + A → pπ− + A lie systematically below the theoretical (full) curves because the data
points represent only one channel (a particular final state) of the total diffractive cross
section.

For pion projectiles, the approach, which uses Pπ (σ ), also describes the available
experimental data well [80].

Inelastic diffraction (diffractive dissociation) on nuclei arises due to scattering at impact
parameters that are rather close to the nuclear surface, where the nucleus is not so opaque and

<latexit sha1_base64="uUQ2Me/P3eN32Udv7w7JXL1gO8o="></latexit>

�pA
diff =

Z
d2b

"Z
d�Pp(�)hp||�A(b)|2|pi �

✓Z
d�Pp(�)hp|�A(b)|pi

◆2
#

�A(b) = 1� e�
�
2 TA(b)

TA(b) =

Z
dz⇢A(b, z)

l Cross section fluctuations also 
account for major part of large ET 
fluctuations in heavy-ion collisions at 
CERN SPS, Heiselberg, Baym, Blättel, Frankfurt, 

Strikman, PRL 67 (1991) 2946, and strongly affect 
charge particle multiplicity in pA 
scattering at 5 TeV, ATLAS Coll., EPJC 76 (2016) 4, 

199 → also expected in 𝛾A
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l At collider energies and in wide range of impact parameters, inelastic 
diffraction is strongly suppressed due to blackness of interactions (ωσ →0) → 
it competes with the e.m. mechanism, Guzey, Strikman, PLB 633 (2006) 245

pA coherent diffraction dissociation (2)
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Figure 52. The A dependence of the Coulomb and hadronic contributions to the
coherent di↵ractive proton–nucleus cross section at the LHC.

10.2. Distribution over the number of wounded nucleons

To determine the inelastic cross section �⌫ for the proton to interact with ⌫ nucleons

in proton–nucleus collisions, the standard Glauber formalism [322] at high energies can

be generalized to include the e↵ect of cross section fluctuations [323]. When the impact

parameters in nucleon–nucleon (NN) interactions are small compared to the typical

distance between neighboring nucleons, one obtains [92]

�⌫ =

Z
d�Pp(�)

 
A

⌫

!Z
d

2~b


�in(�)T (b)

A

�⌫ 
1 � �in(�)T (b)

A

�A�⌫

, (207)

where �in(�) is the inelastic cross-section for a configuration with the given total cross-

section, which following Refs. [92, 324] is taken to be a fixed fraction of �. In the

limit, when the e↵ect of cross section fluctuations is neglected, Pp(�) = �(� � h�i) and

Eq. (207) reduces to the Glauber model expression. The distribution over ⌫ can be

calculated with a Monte Carlo Glauber procedure, which includes NN correlations and

finite-size e↵ects [325].

We explained previously in Sec. 6 that there is a t 6= 0 component of the inelastic

di↵raction, which is not related to the fluctuations of the cross section. In principle,

this contribution has to be included in �in and in the modeling of the final states

corresponding to the interaction with ⌫ nucleons. However, it appears that the current

uncertainties in the strength of the di↵raction at the LHC and, in particular, in the

value of !� are significantly larger than this e↵ect.

There can be several sources of fluctuations of the cross section. Among them is the

strength of the interaction of a quark–gluon configuration, which is likely to depend on x
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where b is the impact parameter; F (�, b) = 1� e
��T (b)/2 is the Glauber profile function,

which is the state |ni–nucleus scattering amplitude in the impact parameter space. Note

that Eq. (204) combines the discrete and continuous versions of the formalism of cross

section fluctuations and implies that states |ni interact with nuclear target nucleons

with the cross section �; the corresponding distribution is given by Ph(�).

Using completeness of the states |ni, the �
hA
di↵ cross section can be presented in the

following final form

�
hA
di↵ =

Z
d

2
b

✓ Z
d�Ph(�)|hh|F 2(�, b)|hi| �

⇣ Z
d�P (�)|hh|F (�, b)|hi|

⌘2
◆

. (205)

Equation (205) is applicable for su�ciently heavy nuclei A � 10, where the essential

momentum transfer squared t in the rescatterings is small due to the suppression by the

nucleus form factor. For the proton beam, it predicts that �
pA
di↵ / A

0.8 for A ⇡ 16 and

�
pA
di↵ / A

0.4 for A ⇡ 200. This is consistent with the A dependence observed in semi-

inclusive n + A ! p⇡
� + A data for the di↵ractive mass interval 1.35  M  1.45 GeV

[317] and with the absolute cross section of coherent inelastic di↵raction o↵ emulsion

targets [318]. For a review, see [319].

In the case of scattering o↵ light nuclei, one needs to take into account the t

dependence of the elementary di↵ractive amplitude. The results of the theoretical

analysis including this e↵ect [320] agrees well with the data on proton coherent di↵ractive

dissociation on He-4 [321].

At the collider energies and in a wide range of impact parameters, the interaction

becomes practically completely black leading to a strong suppression of the inelastic

di↵raction and the dominance of the excitation of the proton via the Coulomb photon

exchange [242]. The corresponding cross section is given by convolution of the flux of

the equivalent photons N�/A(!) with the total photon-proton cross section �
�p
tot

�
pA
e.m. =

Z
d!

!
N�/A(!)��p

tot(s) , (206)

where ! is the photon energy Since the Coulomb contribution can be calculated with a

high precision, hadronic di↵raction can be measured up to the energies, where the ratio

of two contributions approaches unity.

The A dependence of the Coulomb and hadronic di↵ractive contributions in the

LHC energy range is presented in Fig. 52 for a sample of nuclei (Pb, Xe, O). One

can see that at the LHC, measurements of the hadronic contribution is possible for

A  16. At the same time, the hadronic contribution to coherent di↵raction on heavy

nuclei begins to compete with the e.m. mechanism only for
p

sNN  100 GeV, see the

discussion in [242].

Note that measurements of coherent di↵raction in pp, pD, and p
4
He scattering

were performed with internal jet targets at FNAL. Therefore, it is maybe possible to

perform similar studies using the gas targets within the ALICE and LHCb gas target

projects.
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l Similarly to the proton, one can construct P(σ) for pions, Blättel, Baym, Frankfurt, 

Strikman, PRL 70 (1992) 896 and ρ mesons, Frankfurt, Guzey, Strikman, Zhalov, PRB 752 (2016) 51

Cross section fluctuations for ρ mesons
CONTENTS 74

To proceed with the determination of !
⇢
�, one invokes the result of the analysis in

Ref. [249], which demonstrated that the cross sections of photon and pion di↵ractive

dissociation can be related as follows

d��p!Xp(t = 0)/dt

��p
⇡ d�⇡p!Xp(t = 0)/dt

�⇡p
=

!
⇡
�

16⇡
�⇡p , (150)

where ��p is the total photoabsorption cross section. Combing Eqs. (148) and (150),

one obtains

!
⇢
� =

✓
f⇢

e

◆2
��p�⇡p

�
2
⇢N

!
⇡
� . (151)

Figure 32 shows the distribution P⇢(�) for ⇢ mesons as a function of � at
p

s = 46

GeV and
p

s = 62 GeV. For comparison with the pion case, we also give the

corresponding P⇡(�) by thin curves.

 0
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Figure 32. The distribution P⇢(�) for ⇢ mesons as a function of � for
p

s = 46 GeV
(solid red) and

p
s = 62 GeV (blue dashed). For comparison, the thin curves show

P⇡(�) for pions.

6.5. P�(⇤)(�) distribution for real and virtual photons

It is well known that real and virtual photons also reveal their hadron-like nature in

strong interactions. For example, in the vector dominance (VMD) model, approximately

70% of the total photoabsorption cross section comes from the contribution of ⇢, ! and

� mesons [250].

In QCD, it is instructive to discuss the hadronic structure of real and virtual photons

in the language of the color dipole model, see Sec. 3. In general, the photon at high

energies can be viewed as superposition of the following two types of components. First,
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l Contribution of small-σ fluctuations is enhanced compared to pion due to 
point-like 𝛾-ρ coupling (VMD), which is also supported by HERA data on 
σ(𝛾p→ρp) cross section
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Figure 31. The distribution P⇡(�) as a function of � for
p

s = 46 GeV (solid red)
and

p
s = 62 GeV (blue dashed).

reduction of the ��p!⇢p cross section is o↵ered by the color dipole model, where due to

the point-like coupling of the photon to quarks, the overlap between the real photon and

⇢ meson light-cone wave functions selects on average dipoles with a smaller transverse

sizes than those characteristic for the pion (⇢ meson) wave function. In the language

of P⇢(�), it leads to an enhanced contribution of small �, which can be modeled in the

following form [248]

P⇢(�) = N⇢
1

(�/�0)2 + 1
e

�(���0)2/(⌦�0)2
. (147)

Second, small-size quark–antiquark dipoles are characterized by the large relative

transverse momentum and the large invariant mass. To take this into account, one

should model the variance of the P⇢(�) distribution, !
⇢
�, using information on photon

di↵ractive dissociation on the proton. This can be done as follows [248]. Using the

formalism of cross section fluctuations, the cross section of photon di↵ractive dissociation

on the proton can be written in the following form [compare to Eq. (140)]

d��p!Xp(t = 0)

dt
=

1

16⇡

✓
e

f⇢

◆2 Z
d�P⇢(�)(�2 � �

2
⇢N) =

1

16⇡

✓
e

f⇢

◆2

!
⇢
��

2
⇢N , (148)

where f⇢ is the ��⇢ coupling constant fixed by the �(⇢ ! e
+
e

�) width of the ⇢ ! e
+
e

�

decay, f
2
⇢ /(4⇡) = 2.01±0.1. In Eq. (148), �⇢N is the total ⇢–nucleon cross section, which

is determined by fitting the available fixed-target and HERA experimental data on the

elasic d��p!⇢p(t = 0)/dt cross section,

�⇢N =

Z
d�P⇢(�)� =

f⇢

e

r
16⇡

d��p!⇢p(t = 0)

dt
. (149)
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l In addition, the width of fluctuations 
ωσ  is enhanced by small-σ 
fluctuations with large pT and M*. 
Using relation (factorization) 
between σ(𝛾p→Xp) and σ(𝜋p→Xp) 

<latexit sha1_base64="s/gSjnUfpvM8t6NWDEsAc3zqig4="></latexit>

!⇢
� =

✓
f⇢
e

◆2 ��p�⇡p

�2
⇢N

3

2
!⇡
�

l Resulting P(σ) for ρ mesons, Frankfurt, 
Guzey, Stasto, Strikman, review submitted to ROPP

𝜋

ρ
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l The natural application/test of this formalism is coherent photoproduction of 
ρ mesons on nuclei

Coherent ρ photoproduction in heavy-ion UPCs

CONTENTS 99

calculation and interpretation of coherent and incoherent (quasi-elastic) cross sections of

hadron–nucleus and photon–nucleus scattering at high energies in the Gribov–Glauber

framework.

Applying the notion of cross section fluctuations to the � ! ⇢ transition, one

readily obtains the cross section of coherent ⇢ photoproduction on nuclei [248]

��A!⇢A =

✓
e

f⇢

◆2 Z
d

2
b

����
Z

d�P⇢(�)
⇣
1 � e

� 1
2�TA(b)

⌘����
2

, (195)

where f
2
⇢ /(4⇡) = 2.01 ± 0.1 is determined from the ⇢ ! e

+
e

� decay [250]; P⇢(�)

is the distribution extensively discussed in Sec. 6, see Fig. 32. Equation (195) has

a clear physics interpretation: long before the target, the photon fluctuates into a

coherent superposition of eigenstates of the scattering operator; each state interacts

with the nucleus according to the Gribov–Glauber approach; the result is summed

over all possible fluctuations with the probability distribution P⇢(�) corresponding to

photoproduction of ⇢ in the final state. Since fluctuations corresponding to di↵erent

values of � are present in the � � ⇢ transition, Eq. (195) naturally takes into account

the inelastic di↵ractive intermediate states leading to the inelastic (Gribov) shadowing

correction.

In the absence of cross section fluctuations, one obtains the standard Glauber model

expression for the cross section of coherent ⇢ photoproduction on nuclei,

��A!⇢A =

✓
e

f⇢

◆2 Z
d

2
b

⇣
1 � e

� 1
2�⇢NTA(b)

⌘2

, (196)

where �⇢N is the total ⇢ meson-nucleon cross section. In this case, nuclear shadowing

is determined by multiple elastic rescattering with the �⇢N cross section, which leads to

the standard Glauber nuclear shadowing correction.

In the incoherent case, using the completeness (closure) of the nuclear final states

A
0, one obtains the following expression for the cross section of incoherent (quasi-elastic)

⇢ photoproduction on nuclei [311]

��A!⇢A0 =

✓
e

f⇢

◆2 Z
d

2
bTA(b)

✓Z
d�P⇢(�)

�p
16⇡B

exp


��

in

2
TA(b)

�◆2

, (197)

where B is the slope of the t dependence of the �p ! ⇢p cross section; �
in = � � �

el

with �
el = �

2
/(16⇡B), where �

in and �el are the inelastic and elastic cross sections,

respectively. Neglecting hadronic fluctuations of the photon, i.e., replacing P⇢(�) by the

�-function in Eq. (197), one obtains the Glauber model expression for ��A!⇢A0 ,

��A!⇢A0 =

✓
e

f⇢

◆2
�

2
⇢N

16⇡B

Z
d

2
bTA(b)e��inTA(b) = ��p!⇢p

Z
d

2
bTA(b)e��in

⇢NTA(b)
, (198)

where �
in
⇢N is the inelastic ⇢ meson-nucleon cross section.

Equations (197) and (198) have a clear physical meaning and interpretation: elastic

scattering of states |�i (elastic photoproductuon of ⇢ mesons) takes place on any of A

nucleons of the target, whose distribution in the transverse plane is given by TA(b); these

states further interact with the rest of target nucleons, which leads to the attenuation
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l It generalizes VMD+Glauber model giving most of nuclear suppression S2~0.17 
by accounting for inelastic diffractive intermediate states leading to additional 
30% Gribov shadowing correction .
l Good agreement with RHIC and ALICE (Runs 1&2) data on coherent ρ 
photoproduction in Au-Au and Pb-Pb UPCs, Frankfurt, Guzey, Strikman, Zhalov, PRB 752 (2016) 

51; Guzey, Kryshen, Zhalov, PRC 102 (2020) 1, 015208    
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Figure 47. The cross section of coherent ⇢ photoproduction in Pb-Pb UPCs atp
sNN = 2.76 TeV as a function of the rapidity y: predictions of the Gribov–Glauber

model (red solid curves) and the Glauber model (blue dashed and green dot-dashed
curves) are compared to the ALICE data [313]. The shaded band gives the theoretical
uncertainty due to modeling of the P⇢(�) distribution.

parameter !
⇢
� in Eqs. (148) and (151) due to the variation of the parameter � in Eq. (145)

in the interval � = 0.25 � 0.35.

In contrast, the mVMD-GM (blue dashed curve) and the VMD-GM (green

dot-dashed curve) calculations are based on Eq. (196), which includes only

elastic intermediate states in the calculation of nuclear shadowing (Glauber model)

and significantly overestimate the data (the calculations are based on di↵erent

parametrizations of the d��p!⇢p(t = 0)/dt on the proton, see Ref. [248]).

Note also that in all these calculations, one neglects a small additional e↵ect due to

the leading twist shadowing for configurations with small �  10 mb, see Sec. 8, which

would lead to a small decrease of d��A!⇢A/dy.

Figure 48 presents the energy dependence of the cross section of coherent ⇢

photoproduction in Pb-Pb UPCs at y = 0. Theoretical predictions of the Gribov–

Glauber model (red solid curve with the shaded band) and STARlight Monte Carlo

(black dot-dashed curve) are compared to the scaled STAR data at
p

sNN = 200

GeV [314] and the ALICE data at
p

sNN = 2.76 TeV [313] and
p

sNN = 5.02 TeV [315].

One can see from the figure that the approach based on the Gribov–Glauber model of

nuclear shadowing describes the normalization and the energy dependence of the cross

section very well.
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Figure 48. The cross section of coherent ⇢ photoproduction in Pb-Pb UPCs as a
function of WNN =

p
sNN at y = 0. Predictions of the Gribov–Glauber model (red

solid curve with the shaded band) and STARlight Monte Carlo (black dot-dashed
curve) are compared to the scaled STAR data at

p
sNN = 200 GeV [314] and the

ALICE data at
p

sNN = 2.76 TeV [313] and
p

sNN = 5.02 TeV [315].

In contrast, the models for the photon–nucleus interaction implemented in the

STARlight Monte Carlo [316], which is often used in processing and analysis of UPC

data, tends to underestimate the cross section at LHC energies. This is the result of

the assumption that the t dependence of d��A!⇢A/dt is given by the nuclear form factor

squared and identification of the �
in
⇢A inelastic nuclear cross section with the total one,

see detailed discussion in [311].

Finally, predictions for the cross section of incoherent ⇢ photoproduction in Pb-Pb

UPCs as a function of the collision energy at y = 0 are shown in Fig. 49. As in Fig. 48,

the result of the Gribov–Glauber model is contrasted with the STARlight prediction.

As one can see from the figure, the STARlight predictions exceed several fold those of

the Gribov–Glauber model. This is the result of the STARlight framework assumption

that the cross section of the incoherent photoproduction of vector mesons on nuclear

targets is proportional to the ratio of the inelastic ⇢A and ⇢N cross sections. The latter

is in conflict with the Glauber expression for the quasi-elastic �A ! ⇢A
0 cross section.

Figures 47, 48, and 49 clearly demonstrate that it is important to properly take into

account the e↵ects of both elastic and inelastic nuclear shadowing, which dramatically
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l It is well known that real and virtual photons reveal their hadronic structure 
in strong interactions, e.g. VMD accounts for ~70% of σ(𝛾p).


l Two types of hadronic fluctuations: (i) aligned quark-antiquark pairs with 
asymmetric momentum sharing, small pT and large σ~σρN, (ii) small-σ 
perturbative dipoles. The relative importance of these two components 
depends on Q2 and M* of the produced diffractive state, e.g. ρ vs. J/𝜓.


l As in the case of p, 𝜋, ρ, it is convenient to introduce P(σ) for photons

Cross section fluctuations for photons

CONTENTS 75

the photon can fluctuate into aligned quark–antiquark pairs with the invariant mass

M , where the quarks share asymmetrically the photon longitudinal momentum and

have small transverse momenta pt. Such configurations are characterized by large cross

sections of the order of �⇢N and small probabilities of the order of µ
2
/M

2, where µ

is a soft QCD scale. The latter is required to comply with the approximate Bjorken

scaling of the total virtual photon–nucleon cross section [251]. Second, in addition to

the aligned pairs, there are also configurations with large pt, which are characterized

by small cross sections of the order of ↵s(p2
t )/p

2
t and large probabilities to find in the

photon wave function [86]. The relative importance of these two types of contributions

depends on the photon virtuality Q
2, the longitudinal momentum, and the invariant

mass of the produced di↵ractive state.

As in the cases of protons, pions, and ⇢ mesons considered above, it is convenient to

quantify the hadronic structure of photons in terms of the distribution P�(⇤)(�). Starting

with the real photon case, the corresponding distribution P�(�) satisfies the following

constraints,
Z

d�P�(�)� = ��p(W ) ,

Z
d�P�(�)�2 = 16⇡

d��p!Xp(t = 0)

dt
, (152)

where ��p is the total photon–nucleon cross section; d��p!Xp(t = 0)/dt is the cross

section of photon di↵ractive dissociation on the proton including the ⇢ meson peak.

Note that, the distribution P�(�) is not normalizable, i.e., the integral
R

d�P�(�) is

divergent at the lower integration limit due to the infinite renormalization of the photon

Green’s function (the vacuum polarization).

A model for P�(�) should interpolate between the regimes of small and large �;

the following presentation in based on Ref. [252]. For small � ⌧ �⇡N , we use the color

dipole model, which allows one to readily present P�(�) in the following form, (see [252]

for details)

P
dipole
� (�) =

X

q

e
2
q

����
⇡dr

2

d�qq̄(r, mq)

����
Z

dz| �(z, r(�qq̄), mq)|2|�qq̄(r,mq)=�
, (153)

where  �(z, r(�qq̄), mq) is the photon wave function, which depends on the the quark

longitudinal momentum fraction z, the dipole transverse size r, and the quark mass

mq. In Eq. (153), r(�qq̄) is related to the dipole cross section using the following

implementation (see Sec. 3) and Eq. (25) of the dipole formalism [124]

�qq̄(r, mq) =
⇡

2

3
r
2
↵s(Q

2
e↵)xe↵g(xe↵ , Q

2
e↵) , (154)

where Q
2
e↵ = �/r

2 for light quarks and Q
2
e↵ = m

2
q + �/r

2 for heavy quarks (note

that heavy quarks give a negligible contribution to the discussed quantities); xe↵ =

4m2
q/W

2 + 0.75�/(W 2
r
2); mq = 300 MeV for light u, d and s quarks and mc = 1.5

GeV. This choice of the quark masses ensures that the average transverse size of qq̄

configurations in the photon wave function is close to that of the pion, d⇡ = 0.65
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l ∫dσP𝛾(σ)=∞ due to infinite renormalization of photon Green’s function.


l A model for P𝛾(σ) should interpolate between the small-σ (pQCD) and    
large-σ (VMD) regimes.
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l For small σ, we used the dipole model by rewriting σ(𝛾p)=∫d2r|Ψ𝛾|2 σdipole in 
terms of  σ(𝛾p)=∫dσP𝛾(σ)σ, Alvioli, Frankfurt, Guzey, Strikman, Zhalov, PLB 767 (2017) 450

Cross section fluctuations for photons (2)

CONTENTS 75

the photon can fluctuate into aligned quark–antiquark pairs with the invariant mass

M , where the quarks share asymmetrically the photon longitudinal momentum and

have small transverse momenta pt. Such configurations are characterized by large cross

sections of the order of �⇢N and small probabilities of the order of µ
2
/M

2, where µ

is a soft QCD scale. The latter is required to comply with the approximate Bjorken

scaling of the total virtual photon–nucleon cross section [251]. Second, in addition to

the aligned pairs, there are also configurations with large pt, which are characterized

by small cross sections of the order of ↵s(p2
t )/p

2
t and large probabilities to find in the

photon wave function [86]. The relative importance of these two types of contributions

depends on the photon virtuality Q
2, the longitudinal momentum, and the invariant

mass of the produced di↵ractive state.

As in the cases of protons, pions, and ⇢ mesons considered above, it is convenient to

quantify the hadronic structure of photons in terms of the distribution P�(⇤)(�). Starting

with the real photon case, the corresponding distribution P�(�) satisfies the following

constraints,
Z

d�P�(�)� = ��p(W ) ,

Z
d�P�(�)�2 = 16⇡

d��p!Xp(t = 0)

dt
, (152)

where ��p is the total photon–nucleon cross section; d��p!Xp(t = 0)/dt is the cross

section of photon di↵ractive dissociation on the proton including the ⇢ meson peak.

Note that, the distribution P�(�) is not normalizable, i.e., the integral
R

d�P�(�) is

divergent at the lower integration limit due to the infinite renormalization of the photon

Green’s function (the vacuum polarization).

A model for P�(�) should interpolate between the regimes of small and large �;

the following presentation in based on Ref. [252]. For small � ⌧ �⇡N , we use the color

dipole model, which allows one to readily present P�(�) in the following form, (see [252]

for details)

P
dipole
� (�) =

X

q

e
2
q

����
⇡dr

2

d�qq̄(r, mq)

����
Z

dz| �(z, r(�qq̄), mq)|2|�qq̄(r,mq)=�
, (153)

where  �(z, r(�qq̄), mq) is the photon wave function, which depends on the the quark

longitudinal momentum fraction z, the dipole transverse size r, and the quark mass

mq. In Eq. (153), r(�qq̄) is related to the dipole cross section using the following

implementation (see Sec. 3) and Eq. (25) of the dipole formalism [124]

�qq̄(r, mq) =
⇡

2

3
r
2
↵s(Q

2
e↵)xe↵g(xe↵ , Q

2
e↵) , (154)

where Q
2
e↵ = �/r

2 for light quarks and Q
2
e↵ = m

2
q + �/r

2 for heavy quarks (note

that heavy quarks give a negligible contribution to the discussed quantities); xe↵ =

4m2
q/W

2 + 0.75�/(W 2
r
2); mq = 300 MeV for light u, d and s quarks and mc = 1.5

GeV. This choice of the quark masses ensures that the average transverse size of qq̄

configurations in the photon wave function is close to that of the pion, d⇡ = 0.65
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the photon can fluctuate into aligned quark–antiquark pairs with the invariant mass
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2
/M
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t )/p

2
t and large probabilities to find in the

photon wave function [86]. The relative importance of these two types of contributions
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2, the longitudinal momentum, and the invariant
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Z

d�P�(�)� = ��p(W ) ,

Z
d�P�(�)�2 = 16⇡

d��p!Xp(t = 0)

dt
, (152)

where ��p is the total photon–nucleon cross section; d��p!Xp(t = 0)/dt is the cross
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R

d�P�(�) is

divergent at the lower integration limit due to the infinite renormalization of the photon
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P
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� (�) =

X

q

e
2
q

����
⇡dr

2

d�qq̄(r, mq)

����
Z

dz| �(z, r(�qq̄), mq)|2|�qq̄(r,mq)=�
, (153)

where  �(z, r(�qq̄), mq) is the photon wave function, which depends on the the quark
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implementation (see Sec. 3) and Eq. (25) of the dipole formalism [124]

�qq̄(r, mq) =
⇡
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r
2
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2
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2
e↵) , (154)

where Q
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2 for light quarks and Q
2
e↵ = m

2
q + �/r

2 for heavy quarks (note

that heavy quarks give a negligible contribution to the discussed quantities); xe↵ =

4m2
q/W

2 + 0.75�/(W 2
r
2); mq = 300 MeV for light u, d and s quarks and mc = 1.5

GeV. This choice of the quark masses ensures that the average transverse size of qq̄

configurations in the photon wave function is close to that of the pion, d⇡ = 0.65
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Guzey, Strikman, Zhalov, EPJC 16 (2000) 641 
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Figure 12. The normalized dipole size distribution for the inclusive (red) and
di↵ractive (blue) cross section using the GBW dipole cross section. Both transverse
(solid) and longitudinal (dashed) polarizations are shown. Two values of photon
virtuality are chosen : Q2 = 2 GeV2 (left plot) and Q2 = 10 GeV2 (right plot).
x was fixed so that Qs(x) = 1GeV and masses mu = md = ms = 0.14 GeV.

3.4. Distribution of dipole sizes

For a given value of the photon (minus) virtuality Q
2, the photon wave function will

have a distribution of the dipole configurations of di↵erent sizes r. It is instructive to

investigate this distribution in the case of di↵raction as compared to the inclusive cross

section. The inclusive cross section in the dipole model is given by

�
�⇤p
T,L(x, Q

2) =
X

f

Z
d

2
r dz| f

T,L(r, Q, z)|2 �̂(x, r) , (38)

where the photon wave functions [129, 130, 131] have the following form for the

transverse case

| f
T (r, Q, z)|2 =

3↵em

2⇡2
e
2
f

�
[z2 + (1 � z)2]Q2

fK
2
1(Qfr) + m

2
fK

2
0(Qfr)

 
,(39)

and for the longitudinal photon case

| f
L(r, Q, z)|2 =

3↵em

2⇡2
e
2
f

�
4Q2

z
2(1 � z)2

K
2
0(Qfr)

 
. (40)

In Fig. 12 we show the distribution of the dipole sizes for the case of the dipole

cross section from the GBW model for two di↵erent values of Q
2 = 2, 10 GeV2 (left and

right plot respectively). In particular we plot the function 1/��⇤p
T,L pT,L(r, x, Q

2) which is

defined as

�
�⇤p
T,L(x, Q

2) =

Z 1

0

dr pT,L(r, x, Q
2) . (41)

Solid lines denote the dipole size distribution for the transverse photon and the

dashed lines for the longitudinal polarization. Two values of Q
2 are chosen to illustrate

the change in the distribution from larger to smaller sizes. We observe that the

distribution for transversely polarized photons has a longer tail, extending to larger

values of dipole sizes r as compared to the longitudinal one. This is due to the presence

of the aligned jet configurations in the FT (x, Q
2) structure function originating from the

endpoint configurations z = 0 and z = 1.
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l For large σ, we approximate P𝛾(σ) by P(σ) 
for ρ mesons + ω, ɸ in SU(3) limit
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fm, and also leads to a smoother interpolation between small and large � regimes.

The parameter � = 4 is chosen to best reproduce the HERA data on di↵ractive J/ 

photoproduction [187].

For large � � �⇢N , the distribution P�(�) can be approximated by P⇢(�) for ⇢

mesons. Taking the sum of the ⇢, ! and �meson contributions, the resulting distribution

reads:

P(⇢+!+�)/�(�) =
11

9

✓
e

f⇢

◆2

P⇢(�) , (155)

where the coe�cient of 11/9 takes into account the ! and � contributions in the flavor

SU(3) approximation.

Interpolating between the regimes of small and large �, one arrives at the following

hybrid model for P�(�)

P�(�, W ) =

8
><

>:

P
dipole
� (�, W ) , �  10 mb ,

Pint(�, W ) , 10 mb  �  20 mb ,

P(⇢+!+�)/�(�, W ) , � � 20 mb .

(156)

where Pint(�, W ) is a smooth interpolating function.

The resulting model for P�(�) satisfies the constraints of Eq. (152) and gives a

good description of the total and di↵raction dissociation photon–proton cross sections.

Indeed, at the typical W = 100 GeV, it gives ��p =
R

d��P�(�) = 135 µb in

agreement with the PDG value of ��p = 146 µb [253] and d��p!Xp(t = 0)/dt =R
d��

2
P�(�)/(16⇡) = 240 µb/GeV2 in agreement with the estimate of d��p!Xp(t =

0)/dt ⇡ 220 µb/GeV2, which is obtained by integrating the data of [249] over the

produced di↵ractive masses and extrapolating the resulting cross section to the desired

W = 100 GeV.

In the virtual photon case, the distribution P�⇤(�) can be constructed similarly to

the model outlined above. Namely, for the small-� part one uses Eq. (153), where the

real photon wave function is substituted by the one of the virtual photon. In addition,

the large-� contribution due to vector mesons receives a Q
2-dependent suppression factor

dictated by the vector meson dominance model,

P(⇢+!+�)/�⇤(�) =
11

9

✓
e

f⇢

◆2
m

2
⇢

Q2 + m2
⇢

P⇢(�) . (157)

In the intermediate-� region, we use smooth interpolation as in Eq. (156).

The resulting distributions P�(�) for the real photon and P�⇤(�) for the virtual

photon at Q
2 = 4 GeV2 as a function of � at W = 100 GeV are shown in Fig. 33. Note

that for small �, the sensitivity to the choice of the quark mass mq is very weak.

Note that the distribution P�(�) can be probed in measurements of the

total photon–nucleus cross sections at high energies, which can done using, e.g.,

ultraperiphetral heavy ion collisions in next run (Run 3) of the LHC operations. It

is expected that the e↵ect of nuclear shadowing in this cross section is stronger than in

the structure function F2A(x, Q
2) measured in lepton–nucleus DIS and has a significant

W dependence extending into a TeV range.
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For large � � �⇢N , the distribution P�(�) can be approximated by P⇢(�) for ⇢

mesons. Taking the sum of the ⇢, ! and �meson contributions, the resulting distribution
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where the coe�cient of 11/9 takes into account the ! and � contributions in the flavor

SU(3) approximation.

Interpolating between the regimes of small and large �, one arrives at the following

hybrid model for P�(�)
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><
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(156)

where Pint(�, W ) is a smooth interpolating function.

The resulting model for P�(�) satisfies the constraints of Eq. (152) and gives a

good description of the total and di↵raction dissociation photon–proton cross sections.

Indeed, at the typical W = 100 GeV, it gives ��p =
R

d��P�(�) = 135 µb in

agreement with the PDG value of ��p = 146 µb [253] and d��p!Xp(t = 0)/dt =R
d��

2
P�(�)/(16⇡) = 240 µb/GeV2 in agreement with the estimate of d��p!Xp(t =

0)/dt ⇡ 220 µb/GeV2, which is obtained by integrating the data of [249] over the

produced di↵ractive masses and extrapolating the resulting cross section to the desired

W = 100 GeV.

In the virtual photon case, the distribution P�⇤(�) can be constructed similarly to

the model outlined above. Namely, for the small-� part one uses Eq. (153), where the

real photon wave function is substituted by the one of the virtual photon. In addition,

the large-� contribution due to vector mesons receives a Q
2-dependent suppression factor

dictated by the vector meson dominance model,

P(⇢+!+�)/�⇤(�) =
11

9

✓
e

f⇢

◆2
m

2
⇢

Q2 + m2
⇢

P⇢(�) . (157)

In the intermediate-� region, we use smooth interpolation as in Eq. (156).

The resulting distributions P�(�) for the real photon and P�⇤(�) for the virtual

photon at Q
2 = 4 GeV2 as a function of � at W = 100 GeV are shown in Fig. 33. Note

that for small �, the sensitivity to the choice of the quark mass mq is very weak.

Note that the distribution P�(�) can be probed in measurements of the

total photon–nucleus cross sections at high energies, which can done using, e.g.,

ultraperiphetral heavy ion collisions in next run (Run 3) of the LHC operations. It

is expected that the e↵ect of nuclear shadowing in this cross section is stronger than in

the structure function F2A(x, Q
2) measured in lepton–nucleus DIS and has a significant

W dependence extending into a TeV range.
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l Smooth interpolation between 
small and large σ:
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Cross section fluctuations for photons (3)
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Figure 33. The distributions P�(�) and P�⇤(�) for the real and virtual photons at
W = 100 GeV.

Another application of the distribution P�(�) is for the wounded nucleon model in

the fixed-target case, see Sec. 10.

7. Inclusive coherent and incoherent di↵raction in eA DIS

7.1. Connection of nuclear shadowing to di↵raction

It is well known that at high energies, cross sections of hadron–nucleus scattering are

smaller than the sum of individual hadron–nucleon cross sections. This phenomenon

originates from destructive interference among the amplitudes for the interaction with

one and two, tree, etc. nucleons of the nuclear target. In the literature it is called nuclear

shadowing (NS) because it can be interpreted as a decrease of the e↵ective number of

nucleons of the nuclear target due to their overlap or mutual geometric shadowing in

the transverse plane [125, 127, 250, 4]; the resulting theoretical approach is called the

Gribov–Glauber model of nuclear shadowing.

Note here that Glauber considered a quantum–mechanical potential model,

which is di↵erent from the high-energy scattering situation, where the amplitude is

predominantly imaginary. Moreover for this amplitude the diagrams considered by

Glauber are cancelled out in the high energy limit. The reason for this disappearance

is that the projectile does not have time to merge back to its initial state between the

first and second interactions. Gribov found the essential diagrams for hadron–nucleus

scattering and, in the case of the interaction with two nucleons, expressed the correction

to the total nuclear cross section through the di↵ractive cross section on the nucleon,

see Eq. (158). At the same time, for multiple scatterings, one needs modelling, which
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to ROPP

l For virtual photons, we used both T and L photon wf’s for small-σ and VMD 
for large-σ
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where Pint(�, W ) is a smooth interpolating function.

The resulting model for P�(�) satisfies the constraints of Eq. (152) and gives a

good description of the total and di↵raction dissociation photon–proton cross sections.

Indeed, at the typical W = 100 GeV, it gives ��p =
R

d��P�(�) = 135 µb in

agreement with the PDG value of ��p = 146 µb [253] and d��p!Xp(t = 0)/dt =R
d��

2
P�(�)/(16⇡) = 240 µb/GeV2 in agreement with the estimate of d��p!Xp(t =

0)/dt ⇡ 220 µb/GeV2, which is obtained by integrating the data of [249] over the

produced di↵ractive masses and extrapolating the resulting cross section to the desired

W = 100 GeV.

In the virtual photon case, the distribution P�⇤(�) can be constructed similarly to

the model outlined above. Namely, for the small-� part one uses Eq. (153), where the

real photon wave function is substituted by the one of the virtual photon. In addition,

the large-� contribution due to vector mesons receives a Q
2-dependent suppression factor

dictated by the vector meson dominance model,
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In the intermediate-� region, we use smooth interpolation as in Eq. (156).

The resulting distributions P�(�) for the real photon and P�⇤(�) for the virtual

photon at Q
2 = 4 GeV2 as a function of � at W = 100 GeV are shown in Fig. 33. Note

that for small �, the sensitivity to the choice of the quark mass mq is very weak.

Note that the distribution P�(�) can be probed in measurements of the

total photon–nucleus cross sections at high energies, which can done using, e.g.,

ultraperiphetral heavy ion collisions in next run (Run 3) of the LHC operations. It

is expected that the e↵ect of nuclear shadowing in this cross section is stronger than in

the structure function F2A(x, Q
2) measured in lepton–nucleus DIS and has a significant

W dependence extending into a TeV range.
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• The model for P𝛾(σ) gives good description of σ(𝛾p) and dσ(𝛾p→Xp)/dt(t=0).
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l Like coherent photoproduction of ρ mesons on nuclei probes P(σ) for ρ 
mesons, coherent J/𝜓 probes moments P𝛾(σ), Guzey, Strikman, Zhalov, EPJC 74 (2014) 7, 2942 

Coherent J/𝜓 photoproduction in heavy-ion UPCs6 V. Guzey et al.

are given as a series in the number of simultaneous interactions with the tar-
get nucleons (the multiple scattering series). The structure of each term in the
series is unambiguously given by the Gribov–Glauber theory supplemented by
Abramovsky–Gribov–Kancheli (AGK) cutting rules [22] and the QCD factoriza-
tion theorems.

In the graphic form, the multiple scattering series for the γA → J/ψA scattering
amplitude in the leading twist theory of nuclear shadowing is shown in Fig. 2, where

(a) (b) (c)

A A

N
N N

A A A A

γ J/ψ
γ J/ψ γ J/ψ

IP IP IP IP

−
+ − . . .

Fig. 2 The multiple scattering series for the γA → J/ψA scattering amplitude in the leading
twist theory of nuclear shadowing: (a) the impulse approximation, (b) the double scattering,
(c) the interaction with three nucleons of the target.

graph a is the impulse approximation, graph b corresponds to double scattering
(the simultaneous interaction of the probe with two nucleons of the target), and
graph c corresponds to the interaction with three nucleons of the target.

The multiple scattering series of Fig. 2 can be summed as follows. The Gribov
result on the inelastic shadowing correction in hadron–nucleus scattering can be
conveniently implemented using the formalism of cross section fluctuations [23].
In this approach, the interaction of a high-energy projectile with a nucleus is a
two-step process. First, long before the target, the projectile fluctuates into differ-
ent configurations interacting with a hadronic target with different cross sections
σ characterized by the distribution over cross sections P (σ). Second, these fluc-
tuations interact with the nucleus. The corresponding cross section is calculated
separately for each fluctuation (for individual σ) using the Glauber method and
then averaged with P (σ), for details and references, see [6]. In particular, for the
γA → J/ψA scattering amplitude, we obtain:

MγA→J/ψA(t = 0)

= κ

∫

∞
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d2b
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A

∫

d2b

(

〈σ2〉
〈σ〉

T 2
A(b)
22 2!

− 〈σ2〉
〈σ〉

〈σ3〉
〈σ2〉

T 3
A(b)
23 3!

+ . . .

)]

, (6)
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where 〈σN 〉 =
∫

dσP (σ)σN . The factor of κ contains the factors associated with
the overlap of the photon and J/ψ wave functions; its value is determined by the
elementary γp → J/ψp cross section: dσpQCD

γp→J/ψp
(t = 0)/dt = κ

2〈σ〉2/(16π).
The first term in Eq. (6) describes photoproduction of J/ψ on a single nu-

cleon and, hence, is proportional to the number of nucleons A; it is the impulse
approximation corresponding to graph a in Fig. 2.

The second term in Eq. (6) corresponds to the simultaneous interaction of the
hard probe with two nucleons of the target nucleus and gives the leading contri-
bution to the shadowing correction; this term corresponds to graph b in Fig. 2.
According to the Gribov–Glauber theory of nuclear shadowing supplemented by
the collinear factorization theorem for hard diffraction in deep inelastic scattering
(DIS) [24], this contribution is unambiguously expressed in terms of elementary
diffraction, notably, in terms of the diffractive gluon distribution of the proton

G
D(3)
N [25]. The corresponding interaction cross section is σ2(x,µ

2):

〈σ2〉
〈σ〉

≡ σ2(x,µ
2) =

16πBdiff

(1 + η2)xGN (x,µ2)

∫ 0.1

x
dxIPβG

D(3)
N (β, µ2, xIP ) , (7)

where Bdiff ≈ 6 GeV−2 is the slope of the t dependence of the diffractive cross
section; η ≈ 0.17 is the ratio of the real to the imaginary parts of the diffractive

scattering amplitude; the diffractive parton distribution G
D(3)
N (β, µ2, xIP ) depends

on the two light-cone fractions: xIP ≈ (M2
X + µ2)/W 2

γp is the nucleon momentum
fraction carried by the diffractive exchange presented by a zigzag line in Fig. 2
(MX is the invariant mass of the intermediate diffractive state) and β = x/xIP
is the diffractive exchange (“Pomeron”) momentum fraction carried by the active
parton.

The structure of the interaction with three and more nucleons of the target
(graph c in Fig. 2 and higher terms that we do not show) presents extension of
that of graph b: in the interaction with N nucleons of the target, the hard probe
diffractively scatters off two nucleons of the target and the produced diffractive
state rescatters on the remaining N − 2 nucleons, which leads to its attenuation
(absorption). In particular, the third term in Eq. (6) corresponds to the simultane-
ous interaction of the hard probe with three nucleons of the target; its contribution
corresponds to graph c in Fig. 2. This contribution cannot in general be expressed
only in terms of diffractive distributions of the proton and needs to be modeled.
Since the cross section of hard diffraction in ep DIS exhibits the Wγp dependence
typical for soft processes, it appears plausible to model the rescattering cross sec-
tion responsible for the interaction with N ≥ 3 nucleons (the solid circle in graph
c in Fig. 2) using the formalism of cross section fluctuations. Exactly this was
assumed in Eq. (6); the corresponding effective cross section is

〈σ3〉
〈σ2〉

≡ σ3 , (8)

where we suppressed the x and µ2 dependence of σ3 for brevity. In practice, the
σ3 cross section is calculated using the distribution P (σ) modeled using the dipole
formalism or Pπ(σ) of the pion, see details in [6]. This is reasonable at µ2 ∼ few
GeV2, where soft physics dominates. For larger values of µ2 (e.g., in the case of
Υ photoproduction), one can use Eq. (8) only as input at the low initial scale for

l Combining the Gribov-Glauber model of nuclear shadowing with collinear 
QCD factorization for hard diffraction, one has for the leading contribution to 
nuclear shadowing (interaction with 2 nucleons), Frankfurt, Strikman, EPJA 5 (1998) 293
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approximation assuming a single  effective 
cross section σ3 calculated using P𝛾(σ) 

Title Suppressed Due to Excessive Length 7

where 〈σN 〉 =
∫

dσP (σ)σN . The factor of κ contains the factors associated with
the overlap of the photon and J/ψ wave functions; its value is determined by the
elementary γp → J/ψp cross section: dσpQCD

γp→J/ψp
(t = 0)/dt = κ

2〈σ〉2/(16π).
The first term in Eq. (6) describes photoproduction of J/ψ on a single nu-

cleon and, hence, is proportional to the number of nucleons A; it is the impulse
approximation corresponding to graph a in Fig. 2.

The second term in Eq. (6) corresponds to the simultaneous interaction of the
hard probe with two nucleons of the target nucleus and gives the leading contri-
bution to the shadowing correction; this term corresponds to graph b in Fig. 2.
According to the Gribov–Glauber theory of nuclear shadowing supplemented by
the collinear factorization theorem for hard diffraction in deep inelastic scattering
(DIS) [24], this contribution is unambiguously expressed in terms of elementary
diffraction, notably, in terms of the diffractive gluon distribution of the proton

G
D(3)
N [25]. The corresponding interaction cross section is σ2(x,µ

2):

〈σ2〉
〈σ〉

≡ σ2(x,µ
2) =

16πBdiff

(1 + η2)xGN (x,µ2)

∫ 0.1

x
dxIPβG

D(3)
N (β, µ2, xIP ) , (7)

where Bdiff ≈ 6 GeV−2 is the slope of the t dependence of the diffractive cross
section; η ≈ 0.17 is the ratio of the real to the imaginary parts of the diffractive

scattering amplitude; the diffractive parton distribution G
D(3)
N (β, µ2, xIP ) depends

on the two light-cone fractions: xIP ≈ (M2
X + µ2)/W 2

γp is the nucleon momentum
fraction carried by the diffractive exchange presented by a zigzag line in Fig. 2
(MX is the invariant mass of the intermediate diffractive state) and β = x/xIP
is the diffractive exchange (“Pomeron”) momentum fraction carried by the active
parton.

The structure of the interaction with three and more nucleons of the target
(graph c in Fig. 2 and higher terms that we do not show) presents extension of
that of graph b: in the interaction with N nucleons of the target, the hard probe
diffractively scatters off two nucleons of the target and the produced diffractive
state rescatters on the remaining N − 2 nucleons, which leads to its attenuation
(absorption). In particular, the third term in Eq. (6) corresponds to the simultane-
ous interaction of the hard probe with three nucleons of the target; its contribution
corresponds to graph c in Fig. 2. This contribution cannot in general be expressed
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GeV2, where soft physics dominates. For larger values of µ2 (e.g., in the case of
Υ photoproduction), one can use Eq. (8) only as input at the low initial scale for
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the subsequent Dokshitzer–Gribov–Lipatov–Altarelli–Parisi (DGLAP) evolution
to the desired value of µ2.

For the interaction with N ≥ 4 nucleons (not shown in Fig. 2), we assume that
the effect of cross section fluctuations is the same as for the N = 3 term, i.e.,
〈σN 〉 = 〈σ2〉σN−2

3 = 〈σ〉σ2σN−2
3 for N ≥ 3.

With this input, the multiple scattering series in Eq. (6) can be summed and
the result presented in the following compact form:

MγA→J/ψA(t = 0) = A
κ〈σ〉
2

[

1− 2
A
σ2
σ23

∫

d2b
(

e−σ3/2TA(b) − 1 +
σ3
2
TA(b)

)

]

= A
κ〈σ〉
2

[

1− σ2
σ3

+
σ2
σ3

σA3
Aσ3

]

, (9)

where σA3 = 2
∫

d2b(1− e−σ3/2TA(b)) is the total hadron–nucleus cross section in
the case when the total hadron–nucleon cross section is σ3. Note that in Eq. (9)
we did not take into account the small real part of the soft scattering amplitude
corresponding to the σ3 cross section, whose numerical effect is small.

Expressing the γA → J/ψA differential cross section in terms of the amplitude
of Eq. (9), we obtain:

σLTA
γA→J/ψA(Wγp) =

dσpQCD
γp→J/ψp

(Wγp, t = 0)

dt

[

1− σ2
σ3

+
σ2
σ3

σA3
Aσ3

]2

ΦA(tmin) . (10)

Note that the expression in the square brackets in nothing but the nuclear gluon
shadowing ratio R = GA(x,µ

2)/[AGN (x, µ2)], i.e., Eqs. (10) and (5) are consistent
with each other.

It is important to note that unlike the case of the color dipole formalism,
the shadowing correction in Eq. (10) (and also in R) is a leading twist quantity
determined by the elementary hard diffraction in lepton–proton DIS. In the low
nuclear density limit, when the interaction with N ≥ 3 nucleons can be neglected,
the shadowing correction is driven by the leading twist σ2 cross section. At the
low values of x, the N ≥ 3 terms also become important; their contributions are
also leading twist quantities, which can be summed using the σ3 cross section.

It is convenient to characterize the suppression of σLTA
γA→J/ψA(Wγp) due to nu-

clear gluon shadowing in terms of the SLTA
coh (Wγp) ratio:

SLTA
coh (Wγp) ≡

[

σLTA
γA→J/ψA(Wγp)

σIA
γA→J/ψA

(Wγp)

]1/2

=

[

1− σ2
σ3

+
σ2
σ3

σA3
Aσ3

]

= R(x,µ2) , (11)

where σIAγA→J/ψA(Wγp) is the γA → J/ψA cross section in the impulse approxima-

tion (IA) neglecting all nuclear effects except for coherence:

σIAγA→J/ψA(Wγp) =
dσpQCD
γp→J/ψp(Wγp, t = 0)

dt
ΦA(tmin) . (12)

Theoretical predictions for the suppression factor of SLTA
coh of Eq. (11) calculated

using the leading twist theory of nuclear shadowing [6] and the EPS09 global QCD
fits [5] agree well with the nuclear suppression factor obtained in the recent analysis
of the ALICE data on coherent J/ψ photoproduction in Pb-Pb UPCs at x ≈ 10−2

and x ≈ 10−3 [3,4] (see also Fig. 4).
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l The resulting differential cross section is expressed in terms of the leading 
twist nuclear gluon shadowing, Guzey, Strikman, Kryshen, Zhalov, PLB 726 (2013) 290; Guzey, Zhalov, 
JHEP 10 (2013) 207

Coherent J/𝜓 photoproduction in heavy-ion UPCs(2) 

8 V. Guzey et al.

the subsequent Dokshitzer–Gribov–Lipatov–Altarelli–Parisi (DGLAP) evolution
to the desired value of µ2.

For the interaction with N ≥ 4 nucleons (not shown in Fig. 2), we assume that
the effect of cross section fluctuations is the same as for the N = 3 term, i.e.,
〈σN 〉 = 〈σ2〉σN−2

3 = 〈σ〉σ2σN−2
3 for N ≥ 3.

With this input, the multiple scattering series in Eq. (6) can be summed and
the result presented in the following compact form:

MγA→J/ψA(t = 0) = A
κ〈σ〉
2

[

1− 2
A
σ2
σ23

∫

d2b
(

e−σ3/2TA(b) − 1 +
σ3
2
TA(b)

)

]

= A
κ〈σ〉
2

[

1− σ2
σ3

+
σ2
σ3

σA3
Aσ3

]

, (9)

where σA3 = 2
∫

d2b(1− e−σ3/2TA(b)) is the total hadron–nucleus cross section in
the case when the total hadron–nucleon cross section is σ3. Note that in Eq. (9)
we did not take into account the small real part of the soft scattering amplitude
corresponding to the σ3 cross section, whose numerical effect is small.

Expressing the γA → J/ψA differential cross section in terms of the amplitude
of Eq. (9), we obtain:

σLTA
γA→J/ψA(Wγp) =

dσpQCD
γp→J/ψp

(Wγp, t = 0)

dt

[

1− σ2
σ3

+
σ2
σ3

σA3
Aσ3

]2

ΦA(tmin) . (10)

Note that the expression in the square brackets in nothing but the nuclear gluon
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2)/[AGN (x, µ2)], i.e., Eqs. (10) and (5) are consistent
with each other.

It is important to note that unlike the case of the color dipole formalism,
the shadowing correction in Eq. (10) (and also in R) is a leading twist quantity
determined by the elementary hard diffraction in lepton–proton DIS. In the low
nuclear density limit, when the interaction with N ≥ 3 nucleons can be neglected,
the shadowing correction is driven by the leading twist σ2 cross section. At the
low values of x, the N ≥ 3 terms also become important; their contributions are
also leading twist quantities, which can be summed using the σ3 cross section.
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dσpQCD
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ΦA(tmin) . (12)

Theoretical predictions for the suppression factor of SLTA
coh of Eq. (11) calculated
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In Sec. 3, we discussed and quantified within the MFGS dipole model corrections

to Eqs. (99) and (102), hence, to the relation in Eq. (180). One should also mention

additional corrections, which include the e↵ects of the transverse momentum in the gluon

loop and the charmonium wave function [298], relativistic corrections to the charmonium

wave function [299, 95, 188, 300, 223], and next-to-leading order (NLO) QCD radiative

corrections in the framework of collinear factorization for hard exclusive processes and

generalized parton distribution functions (GPDs) [301, 213].

Keeping in mind all these corrections and using Eq. (180), one can express the cross

section of coherent J/ photoproduction on nuclei integrated over t in the following

form [302, 204, 303]

��A!J/ A(W�p) = 
2
A/N

d��p!J/ p(W�p, t = 0)

dt

Z 1

|tmin|
dt


xgA(x, t, µ

2)

AxgN(x, µ2)

�2

⇡ 
2
A/N

d��p!J/ p(W�p, t = 0)

dt


xgA(x, µ

2)

AxgN(x, µ2)

�2 Z 1

|tmin|
dt|FA(t)|2 , (181)

where |tmin| = x
2
m

2
N is the minimal momentum transfer squared. In Eq. (181),

xgA(x, t, µ
2) is the nuclear gluon GPD in the limit, when both gluon lines carry the

same light-momentum fraction x, i.e., it is a two-gluon form factor of the target. Fourier

transform of this quantity relates it to the b-dependent nuclear gluon distribution, which

we discussed in Sect. 7.2,

gA(x, t, µ
2) =

Z
d

2~b e
i~q?·~b

gA(x, b, µ
2) , (182)

where q? is the transverse component of the momentum transfer, t ⇡ �q
2
?. In the

second line of Eq (181), we used the commonly used factorized form gA(x, t, µ
2) =

FA(t)gA(x, µ
2), where FA(t) is the nuclear form factor. This approximation works

su�ciently well for the t-integrated cross section. At the same time, for the di↵erential

cross section, the impact parameter dependence of the leading twist gluon nuclear

shadowing modifies the shape of the t distribution [303], see also the discussion below.

The factor of 2
A/N = (1 + ⌘

2
A)R2

g,A/[(1 + ⌘
2
p)R

2
g,p] takes into account the slightly

di↵erent x dependence of the nuclear and proton gluon distributions, where ⌘ is

the ratio of the real to the imaginary parts of the �T ! J/ T amplitude, and

Rg is a phenomenological enhancement factor relating the usual gluon density to

the gluon generalized parton distribution, see Eq. (96). In the case, when the

gluon distributions in a nucleus and the proton have a similar small-x behavior, i.e.,

Rg(x, µ
2) = xgA(x, µ

2)/[AxgN(x, µ
2)] is a slow function of x, A/N ⇡ 1 with a good

precision.

To quantify nuclear modifications of the J/ photoproduction cross section and

minimize the e↵ects a↵ecting Eqs. (180) and (181), which we mentioned above, it is

useful to introduce the nuclear cross section in the impulse approximation (IA)

�
IA
�A!J/ A(W�p) =

d��N!J/ N(W�p, t = 0)

dt

Z 1

|tmin|
dt|FA(t)|2 . (183)
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Figure 42. The nuclear suppression factor of SPb(x) as a function of the gluon
momentum fraction of x: the values extracted from the Run 1 [291, 292, 294] and the
central rapidity Run 2 [297] UPC data on coherent J/ photoproduction in Pb-Pb
UPCs vs. predictions of the leading twist model of nuclear shadowing and global fits of
nPDFs. The bands indicate the uncertainties for the LTA model (yellow) and EPS09
parametrization (blue).

It is important to point out that the theoretically-defined �IA
�A!J/ A(W�p) is practically

model-independent since its estimate is based on the experimental data.

Then, taking the square root of the ratio of the cross sections in Eqs. (181) and

(183), one introduces the nuclear suppression factor of SPb(x) [302, 204, 304]

SPb(x) =

s
��A!J/ A(W�p)

�
IA
�A!J/ A(W�p)

= A/N
xgA(x, µ

2)

AxgN(x, µ2)
⌘ A/NRg(x, µ

2) . (184)

It is expected that almost all kinematic factors and mentioned corrections cancel in the

ratio of the nuclear and IA( proton) cross sections. Thus, Eq. (184) establishes a direct

correspondence between the suppression factor of SPb(x) and the ratio of the nuclear

and nucleon gluon distributions Rg(x, µ
2). Further, since at central rapidities |y| ⇡ 0,

the d�AA!AAJ/ (y)/dy cross section is unambiguously related to the ��A!J/ A(W�p)

photoproduction cross section at the definite value of W�p =
p

2ENMJ/ , Eq. (184)

gives a one-to-one correspondence between the measured UPC cross section at central

rapidities and Rg(x, µ
2) at x = MJ/ /(2EN).

Figure 42 shows a comparison of the values of SPb(x) extracted from the Run

1 [291, 292, 294] and the central rapidity Run 2 [297] UPC data on coherent J/ 

photoproduction in Pb-Pb UPCs with Rg(x, µ
2) predicted in the leading twist model

of nuclear shadowing and global QCD fits of nPDFs. Note that following the analysis

of Ref. [204], we take advantage of the ambiguity in the exact values of the scale µ

Page 92 of 127AUTHOR SUBMITTED MANUSCRIPT - ROPP-101426

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

CONTENTS 92

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

10
-4

10
-3

10
-2

10
-1

S
P
b
(
x
)

x

CMS, Run 1
ALICE, Run 1

ALICE, Run 2, y=0
LTA+CTEQ6L1

EPS09
HKN07

nDS

Figure 42. The nuclear suppression factor of SPb(x) as a function of the gluon
momentum fraction of x: the values extracted from the Run 1 [291, 292, 294] and the
central rapidity Run 2 [297] UPC data on coherent J/ photoproduction in Pb-Pb
UPCs vs. predictions of the leading twist model of nuclear shadowing and global fits of
nPDFs. The bands indicate the uncertainties for the LTA model (yellow) and EPS09
parametrization (blue).

It is important to point out that the theoretically-defined �IA
�A!J/ A(W�p) is practically

model-independent since its estimate is based on the experimental data.

Then, taking the square root of the ratio of the cross sections in Eqs. (181) and

(183), one introduces the nuclear suppression factor of SPb(x) [302, 204, 304]

SPb(x) =

s
��A!J/ A(W�p)

�
IA
�A!J/ A(W�p)

= A/N
xgA(x, µ

2)

AxgN(x, µ2)
⌘ A/NRg(x, µ

2) . (184)

It is expected that almost all kinematic factors and mentioned corrections cancel in the

ratio of the nuclear and IA( proton) cross sections. Thus, Eq. (184) establishes a direct

correspondence between the suppression factor of SPb(x) and the ratio of the nuclear

and nucleon gluon distributions Rg(x, µ
2). Further, since at central rapidities |y| ⇡ 0,

the d�AA!AAJ/ (y)/dy cross section is unambiguously related to the ��A!J/ A(W�p)

photoproduction cross section at the definite value of W�p =
p

2ENMJ/ , Eq. (184)

gives a one-to-one correspondence between the measured UPC cross section at central

rapidities and Rg(x, µ
2) at x = MJ/ /(2EN).

Figure 42 shows a comparison of the values of SPb(x) extracted from the Run

1 [291, 292, 294] and the central rapidity Run 2 [297] UPC data on coherent J/ 

photoproduction in Pb-Pb UPCs with Rg(x, µ
2) predicted in the leading twist model

of nuclear shadowing and global QCD fits of nPDFs. Note that following the analysis

of Ref. [204], we take advantage of the ambiguity in the exact values of the scale µ
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l Very nice agreement of ALICE 
(Runs 1&2) and CMS results with 
models predicting large nuclear 
gluon shadowing. In particular, with 
leading twist model of nuclear 
shadowing, Frankfurt, Guzey, Strikman, Phys. 

Rept. 512 (2012)   
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l Good description of SPb is a consequence of large leading twist nuclear 
gluon shadowing originating from large probability of diffraction on the proton.

l All of shadowing comes from inelastic Gribov shadowing → compare to a 
significantly smaller suppression coming from small dipole-nucleus scattering, 

l It is a generic feature of cross section fluctuations: relative contribution of 
inelastic shadowing compared to eikonal approximation grows with increase 
of ωσ (projectile size).


l Energy dependence of nuclear suppression for ρ and J/𝜓 photoprod. on Pb: 

Coherent J/𝜓 photoproduction in heavy-ion UPCs(3) 

CONTENTS 104
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Figure 50. The nuclear suppression factor of S2
Pb(W ) as a function of W for coherent

photoproduction of ⇢ and J/ mesons on Pb. See text for explanations.

of the parameter � = 0.3 ± 0.05, see Eq. (145). For comparison, we also show the

S
2
Pb(W ) for coherent J/ photoproduction. Predictions of the leading twist model of

nuclear shadowing are represented by the orange band and are obtained by squaring the

corresponding values in Fig. 42 and keeping in mind that x = M
2
J/ /W

2. In addition,

we show the result of the analysis of Ref. [304], where the nuclear suppression factor

for coherent J/ photoproduction was extracted from the fit to all available LHC data

(Runs 1 and 2, central and forward rapidities) on coherent J/ photoproduction in

Pb-Pb UPCs (the dot-dashed blue curve and the associated error band that fans out

toward large W or small x).

Note that cross section fluctuations, which lead to inelastic nuclear shadowing in

elastic photoproduction of ⇢ mesons on nuclei, significantly suppress the contributions

to the elastic cross section for given impact parameter compared to the expectation of

the Glauber model. This is illustrated in the left panel of Fig. 51 showing the ratio

P
Fluct.
el (b)

P
Glauber
el (b)

=

hR
d�P⇢(�)

⇣
1 � e

� 1
2�TA(b)

⌘i2

⇣
1 � e

� 1
2�⇢NTA(b)

⌘2 , (202)

as a function of |b| at W = 100 GeV. As in the case of nuclear di↵ractive structure

functions and PDFs, inelastic nuclear shadowing strongly suppresses the coherent

nuclear cross section, makes it more transparent and delays the onset of the black disk

limit compared to the expectations of the Glauber model, where the interactions are

nearly black (fully absorptive) for b = 0. This is further illustrated in the right panel of
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Number of wounded nucleons in 𝛾A scattering
l Gribov-Glauber model for hadron-nucleus scattering is unitary and satisfies 
AGK cancellation → cross section of physical process of inelastic production 
on ν nucleons (wounded nucleons), Bertocchi, Treleani, J. Phys. G: Nucl. Phys. 3 (1977) 147

6

III. COLOR FLUCTUATIONS AND THE NUMBER OF WOUNDED NUCLEONS IN γA SCATTERING

One of important advantages of the Gribov–Glauber approximation is that it accounts for diffractive processes in
the intermediate states including the photon diffraction into large masses and, therefore, conserves energy–momentum
by virtue of duality between the parton model and hadronic descriptions. On the contrary, the Gribov–Glauber model,
which accounts for elastic intermediate state only [16], violates energy–momentum conservation for the processes with
multiple multiplicity of wound nucleons; it is proven by direct calculations of the energy released in such processes.
A Monte-Carlo procedure including finite size effects in the elementary cross section and short-range correlations
between nucleons was developed in [18]. Thus, the formulae for the number of wounded nucleons follow directly from
the formulae for the CFs but differ from the combinatorics of the Glauber model due to the need to average over
values of the cross section. For hard processes, nuclear shadowing and its impact on the number of wounded nucleons
is calculated separately through the QCD factorization theorem.
It has been understood long ago that the large coherence length prevents cascading of rapid secondary hadrons

since they are formed outside of a target. Thus, only low-energy cascades are allowed. Hence, the number of wounded
nucleons given by the formulae below can be probed by selecting a kinematical region in the rapidity, where the
contribution of cascades is expected to be small, see the discussion in the next section.
Previously we used the CF model to calculate the cross section of inelastic interactions with exactly ν nucleons, σν ,

in pA collisions. The model was found to be consistent with the data at least up to ν ∼ 10 [15]. Hence it is natural to
use a similar approach to account for the CF in the photon wave function in γA scattering for the interaction strength
comparable or larger than σ(πN) (CF effects due to the contribution of small-size configurations to be discussed later,
see Eq. (11)). Then, for the photon–nucleus cross section corresponding to exactly ν inelastic interactions with the
target nucleons, σν , one obtains in the Gribov–Glauber model in the optical model limit:

σν =

∫

dσPγ(σ,W )

(

A
ν

)
∫

d2%b

[

σin(σ)TA(b)

A

]ν [

1−
σin(σ)TA(b)

A

]A−ν

, (9)

where%b is the impact parameter; σin is the inelastic, non-diffractive cross section for the configuration characterized by
the total cross section σ; TA(b) =

∫

dzρA(b, z) in the nuclear optical density, where ρA(r) is the density of nucleons.
Note that we use σin = 0.85 σ (it is based on our estimate that in the considered range, the elastic cross section
constitutes approximately 15% of the total one) and the Wood–Saxon density of nucleons for the 208Pb target [18] in
our analysis. In the derivation of Eq. (9), we employ the discussed above equivalence between the Gribov–Glauber
model and cross section fluctuations approach. This equivalence becomes trivial, if one uses the approximation of
completeness over diffractively produced states. It is worth emphasizing that we consider here soft interaction of
the multiparton configurations of the hadronic component of the photon wave function. For the interaction of the
projectile consisting exactly of two constituents, only ν = 1, 2 are allowed, see Ref. [7, 43].
The probability to have exactly ν wounded nucleons in γA scattering, P (ν), reads:

P (ν,W ) =
σν

∑

∞

1 σν
, (10)

where σν are given by Eq. (9). The probability distribution P (ν,W ) calculated using Eqs. (9) and (10) is shown in
Fig. 2 by the curve labeled “Color Fluctuations”. For comparison, we also show the results of the calculation, where
the effect of CFs is neglected and the photon is represented by an effective fluctuation interacting with the total cross
section σ = 25 mb; the corresponding curve is labeled “Glauber”.
Equation (9) does not take into account that in QCD, configurations corresponding to a small cross section of

the interaction with the nucleon at high energies interact with the collective small-x gluon field of the nucleus,
which is suppressed compared to the sum of the individual gluon fields of the nucleons due to the phenomenon of
the leading twist (LT) nuclear shadowing [44]. This is supported by the observation of the large LT shadowing in
coherent photoproduction of J/ψ in Pb-Pb UPCs at the LHC [45–47]. This implies that Eq. (9) underestimates
the probability of the interaction with two and more nucleons for small σ, which is determined by the LT nuclear
shadowing. It effectively takes into account the implication of QCD factorization theorem: the presence of the
multiparton configurations in a small size qq̄ configurations which are ignored in the eikonal models and in particular
in Eq. (9).
To take into the account this effect, we modify Eq. (9) and use the following expression:

σν =

∫

∞

0
dσPγ(σ,W )

(

A
ν

)[

σin

σin
eff

Θ(σ0 − σ) +Θ(σ − σ0)

]
∫

d2%b

[

σin
effTA(b)

A

]ν [

1−
σin
effTA(b)

A

]A−ν

, (11)

where σ0 = 20 mb (see details below); σin/σin
eff ≈ σ/σeff < 1 is the suppression factor modeling the effect of the

LT shadowing. The effective cross section of σeff (note that σin
eff = 0.85σeff) is a function of σ, which we determine

l Cross section fluctuations in the photon modify it, Alvioli, Frankfurt, Guzey, Strikman, 
Zhalov, PLB 767 (2017) 450
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FIG. 2: The probability distributions P (ν,W ) of the number of inelastic collisions ν. Predictions of Eqs. (9) and (11) are
shown by the curves labeled “Color Fluctuations” and “Generalized CF”, respectively.For comparison, the Gribov-Glauber
model calculation with σ = 25 mb, which neglects the effect of CFs, is shown by the curve labeled “Glauber”.

using the following procedure. For large σ > σ0, we set σeff = σ. For σ < σ0, σeff is defined as the cross section
corresponding to the gluon shadowing ratio Rg(x) [44] calculated in the high-energy eikonal approximation:

Rg(xeff , Q
2
eff) =

xgA(xeff , Q2
eff)

AxgN (xeff , Q2
eff)

=
2

Aσeff

∫

d2"b
(

1− e−σeff/2TA(b)
)

, (12)

where xeff and Q2
eff are the light-cone momentum fraction and the resolution scale, respectively, which correspond

to the dipole cross section for the given cross section σ = σqq̄(W,dt,mq) (the transverse size dt), see Eq. (3). This
prescription for σeff is based on the observation that since the non-vector-meson component of Pγ(σ) is relatively
small, the gluon shadowing can be considered in a simplified approximation, where CFs for the interaction with
N ≥ 2 nucleons are small and, hence, Rg is given by the single effective rescattering cross section σeff .
To estimate the value of σ0, we notice that the factor of nuclear suppression of coherent J/ψ photoproduction on

nuclei is described very well for the LT nuclear shadowing. In particular, Rg ≈ 0.6 for x = 10−3 [47], which according
to Eq. (12) corresponds to σeff = 17 mb. Therefore, in our analysis we take σ0 = 20 mb. Our numerical analysis
indicates that the results of our calculation depend weakly on the method of smooth interpolation in Eq. (7) and
the assumption about the value of the ratio σin/σin

eff . We call the resulting approach to the calculation of photon–
nucleus inelastic cross sections σν the generalized color fluctuation (GCF) model. The result of the calculation of the
distribution over ν using Eq. (11) is shown in Fig. 2 by the curve labeled “Generalized CF”.
The results presented in Fig. 2 deserve a discussion. For one inelastic photon–nucleus interaction (ν = 1), CFs

in the photon lead to an almost a factor of two enhancement of P (ν) compared to the calculation neglecting CFs.
Thus, an inclusion of the approximately 30% small-σ component of the photon wave function (see the discussion in
the Introduction), leads to a large effect in the inelastic γA scattering. This effect is reduced approximately by a
factor of two when we include the LT nuclear shadowing (compare the “Color Fluctuations” and “Generalized CF”
curves). As ν increases, the small-σ contribution to the distribution Pγ(σ,W ) becomes progressively less important
and all three models give similar results for 2 < ν < 8, where the contribution of the two terms in the integrand of
Eq. (11) approximately compensate each other. For large ν > 10, the two models including the effect of CFs in the
photon predict a much broader distribution P (ν) than the model neglecting CFs: the enhancement at large ν comes
from the contribution of the large-mass inelastic diffractive states implicitly included in Eqs. (9) and (11).

l Probability distribution to have 
exactly ν wounded nucleons

6

III. COLOR FLUCTUATIONS AND THE NUMBER OF WOUNDED NUCLEONS IN γA SCATTERING

One of important advantages of the Gribov–Glauber approximation is that it accounts for diffractive processes in
the intermediate states including the photon diffraction into large masses and, therefore, conserves energy–momentum
by virtue of duality between the parton model and hadronic descriptions. On the contrary, the Gribov–Glauber model,
which accounts for elastic intermediate state only [16], violates energy–momentum conservation for the processes with
multiple multiplicity of wound nucleons; it is proven by direct calculations of the energy released in such processes.
A Monte-Carlo procedure including finite size effects in the elementary cross section and short-range correlations
between nucleons was developed in [18]. Thus, the formulae for the number of wounded nucleons follow directly from
the formulae for the CFs but differ from the combinatorics of the Glauber model due to the need to average over
values of the cross section. For hard processes, nuclear shadowing and its impact on the number of wounded nucleons
is calculated separately through the QCD factorization theorem.
It has been understood long ago that the large coherence length prevents cascading of rapid secondary hadrons

since they are formed outside of a target. Thus, only low-energy cascades are allowed. Hence, the number of wounded
nucleons given by the formulae below can be probed by selecting a kinematical region in the rapidity, where the
contribution of cascades is expected to be small, see the discussion in the next section.
Previously we used the CF model to calculate the cross section of inelastic interactions with exactly ν nucleons, σν ,

in pA collisions. The model was found to be consistent with the data at least up to ν ∼ 10 [15]. Hence it is natural to
use a similar approach to account for the CF in the photon wave function in γA scattering for the interaction strength
comparable or larger than σ(πN) (CF effects due to the contribution of small-size configurations to be discussed later,
see Eq. (11)). Then, for the photon–nucleus cross section corresponding to exactly ν inelastic interactions with the
target nucleons, σν , one obtains in the Gribov–Glauber model in the optical model limit:

σν =

∫

dσPγ(σ,W )

(

A
ν

)
∫

d2%b

[

σin(σ)TA(b)

A

]ν [

1−
σin(σ)TA(b)

A

]A−ν

, (9)

where%b is the impact parameter; σin is the inelastic, non-diffractive cross section for the configuration characterized by
the total cross section σ; TA(b) =

∫

dzρA(b, z) in the nuclear optical density, where ρA(r) is the density of nucleons.
Note that we use σin = 0.85 σ (it is based on our estimate that in the considered range, the elastic cross section
constitutes approximately 15% of the total one) and the Wood–Saxon density of nucleons for the 208Pb target [18] in
our analysis. In the derivation of Eq. (9), we employ the discussed above equivalence between the Gribov–Glauber
model and cross section fluctuations approach. This equivalence becomes trivial, if one uses the approximation of
completeness over diffractively produced states. It is worth emphasizing that we consider here soft interaction of
the multiparton configurations of the hadronic component of the photon wave function. For the interaction of the
projectile consisting exactly of two constituents, only ν = 1, 2 are allowed, see Ref. [7, 43].
The probability to have exactly ν wounded nucleons in γA scattering, P (ν), reads:

P (ν,W ) =
σν

∑

∞

1 σν
, (10)

where σν are given by Eq. (9). The probability distribution P (ν,W ) calculated using Eqs. (9) and (10) is shown in
Fig. 2 by the curve labeled “Color Fluctuations”. For comparison, we also show the results of the calculation, where
the effect of CFs is neglected and the photon is represented by an effective fluctuation interacting with the total cross
section σ = 25 mb; the corresponding curve is labeled “Glauber”.
Equation (9) does not take into account that in QCD, configurations corresponding to a small cross section of

the interaction with the nucleon at high energies interact with the collective small-x gluon field of the nucleus,
which is suppressed compared to the sum of the individual gluon fields of the nucleons due to the phenomenon of
the leading twist (LT) nuclear shadowing [44]. This is supported by the observation of the large LT shadowing in
coherent photoproduction of J/ψ in Pb-Pb UPCs at the LHC [45–47]. This implies that Eq. (9) underestimates
the probability of the interaction with two and more nucleons for small σ, which is determined by the LT nuclear
shadowing. It effectively takes into account the implication of QCD factorization theorem: the presence of the
multiparton configurations in a small size qq̄ configurations which are ignored in the eikonal models and in particular
in Eq. (9).
To take into the account this effect, we modify Eq. (9) and use the following expression:

σν =

∫

∞

0
dσPγ(σ,W )

(

A
ν

)[

σin

σin
eff

Θ(σ0 − σ) +Θ(σ − σ0)

]
∫

d2%b

[

σin
effTA(b)

A

]ν [

1−
σin
effTA(b)

A

]A−ν

, (11)

where σ0 = 20 mb (see details below); σin/σin
eff ≈ σ/σeff < 1 is the suppression factor modeling the effect of the

LT shadowing. The effective cross section of σeff (note that σin
eff = 0.85σeff) is a function of σ, which we determine

l Effect can be observed in 
distribution over transverse 
energy ET.
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l Composite structure of hadronic projectiles (p, 𝜋, ρ, 𝛾) can be conveniently 
accounted for using the formalism of cross section (color) fluctuations.


l In scattering off nuclei, it naturally gives rise to diffractive dissociation and 
inelastic Gribov shadowing correction. 

l The latter plays an important role in coherent photoproduction of light vector 
mesons and quarkonia in heavy-ion UPCs and lead to a good agreement with 
the existing data.


l This also applies to incoherent ρ and J/𝜓 photoproduction on nuclei.


l Knowledge of the photon hadronic structure is needed for calculation of 
rapidity gap survival probability for the resolved photon contribution in 
diffractive dijet photoproduction in UPCs. 


l Less explored are predictions for the number of wounded nucleons and the  
total 𝛾A cross section, which can be studies during Run 3 at the LHC.

Summary


